Parameter Estimation for Hidden Markov Models with Intractable Likelihoods

نویسندگان

  • Sumeetpal S. Singh
  • Ajay Jasra
چکیده

Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the asymptotic properties of ABC based maximum likelihood parameter estimation for hidden Markov models. In particular, we derive results analogous to those of consistency and asymptotic normality for standard maximum likelihood estimation. We also discuss how Sequential Monte Carlo methods provide a natural method for implementing likelihood based ABC procedures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter estimation in pair hidden Markov models

This paper deals with parameter estimation in pair hidden Markov models (pairHMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence rates is established and divergence propert...

متن کامل

Bayesian experimental design for models with intractable likelihoods.

In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utili...

متن کامل

M ay 2 01 1 ASYMPTOTIC BEHAVIOUR OF APPROXIMATE BAYESIAN

Although approximate Bayesian computation (ABC) has become a popular technique for performing parameter estimation when the likelihood functions are analytically intractable there has not as yet been a complete investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the asymptotic properties of ABC based parameter estimators for h...

متن کامل

Coupled hidden Markov models for modelinginteracting

We present methods for coupling hidden Markov models (hmms) to model systems of multiple interacting processes. The resulting models have multiple state variables that are temporally coupled via matrices of conditional probabilities. We introduce a deterministic O(T(CN) 2) approximation for maximum a posterior (MAP) state estimation which enables fast classiication and parameter estimation via ...

متن کامل

Factorial Hidden Markov Models and the Generalized Backfitting Algorithm

Previous researchers developed new learning architectures for sequential data by extending conventional hidden Markov models through the use of distributed state representations. Although exact inference and parameter estimation in these architectures is computationally intractable, Ghahramani and Jordan (1997) showed that approximate inference and parameter estimation in one such architecture,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011